increase figure width

This commit is contained in:
fordprefect
2020-03-27 17:00:36 +01:00
parent 99a9677642
commit d8ebab65f3
5 changed files with 13 additions and 9 deletions

View File

@@ -4,11 +4,11 @@ Plot total cases of countries over time on log scale
import matplotlib.pyplot as pp
def plot(data, countries):
tcp, tc = pp.subplots()
tdp, td = pp.subplots()
ncp, nc = pp.subplots()
ndp, nd = pp.subplots()
figsize = (10,5)
tcp, tc = pp.subplots(figsize=figsize)
tdp, td = pp.subplots(figsize=figsize)
ncp, nc = pp.subplots(figsize=figsize)
ndp, nd = pp.subplots(figsize=figsize)
for loc in data:
if loc not in countries:
continue

View File

@@ -6,13 +6,14 @@ import numpy as np
name="death_per_case"
def plot(data, countries):
figsize = (10,5)
for loc in data:
if loc not in countries:
continue
time, new_cases, new_deaths, total_cases, total_deaths = data[loc]
# death/case
pp.figure(name)
pp.figure(name, figsize=figsize)
pp.plot(time, np.array(total_deaths)/np.array(total_cases), label=f"{loc}", marker=".")
pp.yscale("log")

View File

@@ -6,12 +6,13 @@ import numpy as np
name="delay"
def plot(data, countries):
figsize = (10,5)
for loc in data:
if loc not in countries:
continue
time, new_cases, new_deaths, total_cases, total_deaths = data[loc]
pp.figure(name)
pp.figure(name, figsize=figsize)
day_of_above_hundred_cases = np.argwhere(np.array(total_cases) > 100)[0][0]
new_time_axis = np.arange(len(time)) - day_of_above_hundred_cases

View File

@@ -6,12 +6,13 @@ import numpy as np
name="delay"
def plot(data, countries):
figsize = (10,5)
for loc in data:
if loc not in countries:
continue
time, new_cases, new_deaths, total_cases, total_deaths = data[loc]
pp.figure(name)
pp.figure(name, figsize=figsize)
day_of_above_hundred_cases = np.argwhere(np.array(total_cases) > 100)[0][0]
new_time_axis = np.arange(len(time)) - day_of_above_hundred_cases

View File

@@ -6,12 +6,13 @@ import numpy as np
name="normalized_to_first_death"
def plot(data, countries):
figsize = (10,5)
for loc in data:
if loc not in countries:
continue
time, new_cases, new_deaths, total_cases, total_deaths = data[loc]
pp.figure(name)
pp.figure(name, figsize=figsize)
day_of_first_death = np.argwhere(np.array(total_deaths) > 0)[0][0]
new_time_axis = np.arange(len(time)) - day_of_first_death
pp.plot(new_time_axis, np.array(total_cases), label=f"{loc}", marker=".")