36 lines
1.1 KiB
Python
36 lines
1.1 KiB
Python
"""
|
|
Plot total cases timeshiftet to first death
|
|
"""
|
|
import matplotlib.pyplot as pp
|
|
import numpy as np
|
|
name="normalized_to_100_cases"
|
|
|
|
def plot(data, countries):
|
|
figsize = (10,5)
|
|
for loc in data:
|
|
if loc not in countries:
|
|
continue
|
|
time, new_cases, new_deaths, total_cases, total_deaths = data[loc]
|
|
|
|
pp.figure(name, figsize=figsize)
|
|
day_of_100_cases = np.argwhere(np.array(total_cases) > 99)[0][0]
|
|
new_time_axis = np.arange(len(time)) - day_of_100_cases
|
|
pp.plot(new_time_axis, np.array(total_cases), label=f"{loc}", marker=".")
|
|
|
|
pp.yscale("log")
|
|
pp.xticks(rotation=45)
|
|
pp.ylabel("total cases")
|
|
pp.xlabel("days since 100 reported cases")
|
|
pp.legend(frameon=False)
|
|
axis = pp.axis()
|
|
pp.axis([-2, axis[1], 80, axis[3]])
|
|
|
|
pos = [(10, 5e5), (30, 5e5), (50, 5e5), (70, 1e3)]
|
|
for i, n in enumerate([1,2,3,7]):
|
|
pp.plot([0, axis[1]], [100, np.exp(np.log(2) / n * axis[1])], color="grey", linestyle="--")
|
|
pp.text(pos[i][0], pos[i][1], f"doubling every\n{n} days", fontsize=8)
|
|
|
|
pp.tight_layout()
|
|
|
|
pp.savefig(name+".png")
|