81 lines
2.7 KiB
Python
81 lines
2.7 KiB
Python
"""
|
|
Plot delay of countries
|
|
"""
|
|
import matplotlib.pyplot as pp
|
|
import numpy as np
|
|
name="delay"
|
|
|
|
def plot(data, countries):
|
|
for loc in data:
|
|
if loc not in countries:
|
|
continue
|
|
time, new_cases, new_deaths, total_cases, total_deaths = data[loc]
|
|
|
|
pp.figure(name)
|
|
day_of_above_hundred_cases = np.argwhere(np.array(total_cases) > 100)[0][0]
|
|
|
|
new_time_axis = np.arange(len(time)) - day_of_above_hundred_cases
|
|
pp.plot(new_time_axis, np.array(total_cases), label=f"{loc} - {day_of_above_hundred_cases}", marker=".")
|
|
|
|
pp.yscale("log")
|
|
pp.xticks(rotation=45)
|
|
pp.legend(frameon=False)
|
|
pp.tight_layout()
|
|
|
|
pp.savefig(name+".png")
|
|
|
|
# plot delay
|
|
pp.clf()
|
|
delay = {}
|
|
tcases = [50, 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000] + list(np.arange(10000, np.max(data["United States"][3]), 2500))
|
|
|
|
time_us = data["United States"][0]
|
|
try:
|
|
case_date_us = np.array([time_us[np.argwhere(np.array(data["United States"][3]) > cases)[0][0]] for cases in tcases])
|
|
except:
|
|
print("workaround delay_us:40")
|
|
case_date_us = []
|
|
usdat = np.array(data["United States"][3])
|
|
for cases in tcases:
|
|
try:
|
|
casepos = np.argwhere(usdat > cases)[0][0]
|
|
casetime = time_us[casepos]
|
|
except:
|
|
print(f"case date for {cases} not found")
|
|
casetime = np.nan
|
|
#continue
|
|
case_date_us.append(casetime)
|
|
case_date_us = np.array(case_date_us)
|
|
|
|
total_cases_us = data["United States"][3]
|
|
for loc in data:
|
|
if loc not in countries:
|
|
continue
|
|
if loc in ["United States", "World"]:
|
|
continue
|
|
this_delay = []
|
|
for i, cases in enumerate(tcases):
|
|
try:
|
|
case_date = data[loc][0][np.argwhere(np.array(data[loc][3]) > cases)[0][0]]
|
|
except:
|
|
this_delay.append(np.nan)
|
|
continue
|
|
#case_date = np.array([time_us[np.argwhere(np.array(data[loc][3]) > cases)[0][0]] for cases in tcases])
|
|
|
|
this_delay.append((case_date_us[i] - case_date).days)
|
|
|
|
delay[loc] = this_delay
|
|
|
|
sort = np.argsort(delay)
|
|
|
|
for loc in delay:
|
|
pp.plot(tcases, delay[loc], label=loc, marker=".")
|
|
#pp.plot(np.arange(len(delay)), np.array(delay)[sort] - np.min(delay), marker="o", linestyle="")
|
|
#pp.xticks(ticks=np.arange(len(delay)), labels=np.array(d_loc)[sort])
|
|
pp.xticks(rotation=45)
|
|
pp.legend(frameon=False)
|
|
pp.xlabel("total cases")
|
|
pp.ylabel("delay to United States [days]")
|
|
pp.tight_layout()
|
|
pp.savefig(name+"_usa.png")
|